Nuclear Receptor Rev-erb Alpha (Nr1d1) Functions in Concert with Nr2e3 to Regulate Transcriptional Networks in the Retina
نویسندگان
چکیده
The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function.
منابع مشابه
Modifier Genes as Therapeutics: The Nuclear Hormone Receptor Rev Erb Alpha (Nr1d1) Rescues Nr2e3 Associated Retinal Disease
Nuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in these processes to maintain homeostasis through modulation of transcriptional gene networks. In this study we evaluate the effectiveness of a nuclear hormone ...
متن کاملPhotoreceptor-specific nuclear receptor NR2E3 functions as a transcriptional activator in rod photoreceptors.
NR2E3, a photoreceptor-specific orphan nuclear receptor, is believed to play a pivotal role in the differentiation of photoreceptors. Mutations in the human NR2E3 gene and its mouse ortholog are associated with enhanced S-cones and retinal degeneration. In order to gain insights into the NR2E3 function, we performed temporal and spatial expression analysis, yeast two-hybrid screening, promoter ...
متن کاملAssociation Analysis of Nuclear Receptor Rev-erb Alpha Gene (NR1D1) and Japanese Methamphetamine Dependence
Several investigations suggested abnormalities in circadian rhythms are related to the pathophysiology of psychiatric disorders, including drug addiction. Recently, orphan nuclear receptor rev-erb alpha and glycogen synthase kinase-3 β (GSK-3β) were shown to be important circadian components. In addition, the orphan nuclear receptor rev-erb alpha is a key negative feedback regulator of the circ...
متن کاملThe photoreceptor-specific nuclear receptor Nr2e3 interacts with Crx and exerts opposing effects on the transcription of rod versus cone genes.
Nr2e3 is an orphan nuclear receptor expressed specifically by retinal photoreceptor cells. Mutations in Nr2e3 result in syndromes characterized by excess blue cones and loss of rods: enhanced S-cone syndrome (ESCS) in humans and rd7 in mice. Using yeast two-hybrid screens with Nr2e3 as bait, the cone-rod homeobox protein Crx was identified as an interacting partner of Nr2e3. Immunoprecipitation...
متن کاملTranscriptional Regulation via Nuclear Receptor Crosstalk Required for the Drosophila Circadian Clock
Circadian clocks in large part rely on transcriptional feedback loops. At the core of the clock machinery, the transcriptional activators CLOCK/BMAL1 (in mammals) and CLOCK/CYCLE (CLK/CYC) (in Drosophila) drive the expression of the period (per) family genes. The PER-containing complexes inhibit the activity of CLOCK/BMAL1 or CLK/CYC, thereby forming a negative feedback loop [1]. In mammals, th...
متن کامل